
Overview:

MapChat is a Web-based mapping application designed to allow
multiple people to use an online map as a collaborative tool for
discussing spatially-sensitive issues. The approach used by
MapChat supplements the ‘geotagging’ concepts popularized by
Google Earth/Google Maps and similar tools with ‘geochatting’.
The objective of geochatting is to facilitate content and
knowledge mapping as well as social networking to exchange
views on issues of local importance.

Geochatting:

The geochatting concept is
operationalized in MapChat with
a Web-map interface that forms
the medium of communication
between users. Customized,
synchronous instant messaging
facilitates collaborative
discussion between dispersed

Multi-user Web Mapping with Open Source
Components: MapChat Version 2.0

views on issues of local importance. discussion between dispersed
participants, where each
participant can geotag map
features and communicate, or
chat, via private and public
messaging with other
individuals involved in a
discussion. Technical Re-design of MapChat:

MapChat 2 is significantly improved
from its original version. While the
overall concept remains the same,
much more attention is given to the
organization of code and data structure.

Version 2 is redesigned from the

Zend Framework

Web Server / PHP EnvironmentWeb Server / PHP Environment

Display Login

Startup

MapChat Libraries (PHP)

Process Result to

Request Inputs

API

The MapChat internal
libraries do most of the work
on the server side. A variety
of classes perform specific
tasks, which may be utilized
in multiple contexts:

The MapChat database stores all of the user
account information, group permissions,
discussion characteristics, user/group/discussion
membership relations, and discussion schemas.

Web Client(s)Web Client(s)

jQuery Library

and Plugins
The jQuery library is used by
MapChat on the client side to
provide an enriched set of cross-
browser functionality, including

The Zend Framework is used by MapChat on the server side to
establish a highly modular and extensible development environment.

ka-Map API
The ka-Map JavaScript
API provides the core
mapping functionality in
concert with server side

MapChat

Web clients load an environment composed of HTML, CSS,
and JavaScript code that is initially returned by the server.
Most JavaScript code and other content is subsequently
loaded and executed on-demand via AJAX to minimize initial
start-up time.

MapChat 2
Architecture

Example of GeoChatting as implemented in MapChat 2

Version 2 is redesigned from the
ground-up to take better advantage of
AJAX techniques, on-demand
loading/compression of code, and many
other improvements. The result is a
Web interface that is much more
dynamic (but also usable even over
dial-up connections), a much more
usable/extendible code base, and more
detailed/informative data collection.
This modular implementation allows
components to be included or excluded
in the interface for different discussions
as they are needed or developed.

Case Study – Upper Taieri River Catchment, New Zealand:

Front

Controller
The front controller
redirects requests to
appropriate internal
controllers depending
on the type of request

Load

JavaScript/CSS

Resource
Requests

Compress & Cache

JavaScript/CSS Code

Resources

JavaScript / CSS

Resources

Render & Cache

ka-Map Tile Image

Request Inputs

AJAX
Requests

The API receives
client requests and
responds accordingly
based on the input
data and functions
requested. API
functions use internal
libraries to process
the input, then return
the response to the
client

in multiple contexts:

•PHP Session Tracking
•User/Group Management

• Create/Edit/Membership
• Login tracking

•Discussion Management
•Create/Edit/Membership
•Chat/Event Logging
•Spatial Processing
•Recording/Retrieving User
Map Data
•Managing Maps Via
MapServer / MapScript

The server side architecture is complemented
with a set library of JavaScript functions and
CSS code that work in concert with the functions
made accessible through the API.

MapFiles

Configuration

Files

Spatial Data

Files

Each discussion uses a configuration file to
define the behaviour of the discussion, and to
include/exclude specific components in the
client, allowing customization of the Web-client
depending on the nature of the discussion.

A mapfile defines the default layers that a user
will see when opening a discussion – changes
made to the user’s map are later stored in the
discussion data in the MapChat database. A
mapfile may be used by one or multiple
discussions.

Static data are used typically in the default
mapfile layers.

membership relations, and discussion schemas.
Through the course of each discussion, the
schema for the discussion is populated with chat
messages, user drawings, and other data that
describe users’ interactions with the tool (map
navigation, feature drawings/selections, queries,
etc). These data can be used to reconstruct and
analyze each discussion and how users interact
with the MapChat application.

MapChat Libraries

(JavaScript)

browser functionality, including
management of AJAX requests.
Additional jQuery plugins and
libraries are used to facilitate a
variety of functionality (primarily
user interface widgets).

libraries that render
tiles compatible with
ka-Map.

MapChat

Database

(PostgreSQL +

PostGIS)

The client side JavaScript components of MapChat follow a
similar modular approach as the server side, building on top of
the common resources provided by jQuery and its associated
plugins. Individual class objects provide specific functionality
that can be used in a various contexts for tasks including:

•Core MapChat Application Class management
•Manage AJAX requests, error handling, etc.
•Manage on-demand loading of JavaScript/CSS resources
•Core Mapping Functionality

• Pan, zoom, identify, measure, etc.
• Enable/disable display of individual map layers
• Core Chat/Discussion Functionality
• Log chat messages / event data
• Save feature selections/drawings
• Graphical Interface Components
• Controls / Dialogs / Pop-ups (to provide user access/control
to the components listed above)

The design of MapChat 2 breaks away from the previo us version by using a set of objects and classes de signed specifically for version 2. The server side is on built top of the
Zend Framework (http://framework.zend.com) for PHP, while the client-side utilizes the jQuery (http:// jquery.com) JavaScript library and associated plugi ns. The mapping
components are based on the ka-Map (http://ka-map.m aptools.org) server side and client side APIs. The remaining underlying components include PostgreSQL
(http://www.postgresql.org) and PostGIS (http://www .postgis.org) for the spatial database, and MapServ er/MapScript (http://www.mapserver.org) for renderi ng map images and
managing mapfiles. All of MapChat’s components are derived from Free/Libre and Open Source Software (FLOSS).

Case Study – Upper Taieri River Catchment, New Zealand:

MapChat 2 was tested in a rural community in the Upper Taieri River catchment in the
South Island of New Zealand. Water in this catchment is a scarce resource that is
essential for traditional agricultural practices dominated by dry land mixed sheep and
beef farming. As farmers in this area face a changing national and global economy,
changing environmental conditions, and new regulations on the use of water, they are
seeking ways to cooperate at a community level to help ensure the security of their
local water supply.

Phased Case Study Approach:

Overlooking the Paerau Weir (foreground) and the Ma niototo Plains (background). Many
farmers in this area of the Upper Taieri River catc hment are members of a successful private
irrigation company – an example of what could be imp lemented for the rest of the catchment.

Phase 1: As volunteers for the
case study were identified, they
were initially asked to identify
the property boundaries for
each of their farms.

Phase 2: Each participant was
given access to a tool in
MapChat for individually

Phase 3: Each participant was invited to one
of two workshops held in their community.
During these workshops, the participants
were asked to use MapChat interact with the
map data recorded during Phases 1 and 2,
and record their discussion regarding
irrigation and water resource issues. Direct
supervision/support was provided by the
researchers during these workshops.

Researchers:
G. Brent Hall , University of Otago, NZ
Michael G. Leahy, Wilfrid Laurier University

11th GEOIDE Annual Scientific Conference
Vancouver, B.C., May 27-29, 2009

MapChat for individually
mapping their use of water for
irrigation. In some cases, the
participants were given the
option to perform this phase
unassisted after being given an
instructional tutorial. The rest
were directly assisted by a
researcher to complete the task.

Data collected during the first
two phases of the case study
provided the contextual map
data needed for group
discussions in the following
phases.

Sample of boundaries for three farm management unit s
identified for participants in the Upper Taieri cat chment.

Example of the irrigation mapping tool provided to
case study participants for mapping their irrigatio n.

Phase 4: The final phase sought participation from the
volunteers in a discussion using MapChat from home
via the Internet. A two week period of time was
allocated, during which the participants were asked to
login to the website, and participate in an ongoing
discussion.

